
NASA-CR-194151

Knowledge Systems Laboratory
Report No. KSL 92-38

April 1992
Revised: July 1992

-/ A_., ,'7--_

/ ,_ "_1 _ c,-_._

7"7 ---0

!IF
Software Design by Reusing Architectures

by

Sanjay Bhansali

H. Penny Nil

(NASA-CR-194151) SOFTWARE DESIGN

BY REUSING ARCHITECTURES (Stanford
Univ.) 11 p

N94-13_43

Unclas

G3/61 0182809

KNOWLEDGE SYSTEMS LABORATORY
Department of Computer Science

Stanford University

Stanford, California 94305

This work was supported in part by NASA under grant NCC 2-749-1

Software Design by Reusing Architectures

Sanjay Bhansali
H. Penny Nii

Knowledge Systems Laboratory, Stanford University
701 Welch Road, Building C

Palo Alto, CA 94304

Abstract

Abstractionfostersreuseby providinga classof

art_actsthatcanbeinstantiatedorcustomizedtoproduce

a setofartC'actsmeetingdifferentspecificrequirements.

We proposethatsignificantleveragecan beobtainedby
abstractingsoftwaresystemdesignsand the design

process.The resultofsuchan abstractionisa generic

architectureand asetofknowledge-based,customization
tools that can be used to instantiate the generic
architecture. In this paper we describe an approach for
designing software systems based on the above idea. We
illustrate the approach through an implemented example,
and discuss the advantages and limitations of the

approach.

1 Introduction

Constructing software systems by reusing previously
developed components has long been a subject of
considerable interest in software engineering. One of the

most effective principles that has emerged for reusing
software is abstraction. Abstraction consists of extracting
the inherent, essential aspects of an artifact, while hiding
its irrelevant or incidental properties. Abstraction fosters
reuse by providing a class of artifacts that can be
instantiated or customized to produce several different
artifact instances meeting different requirements.
Procedural and data abstraction, encapsulation or
information hiding, and parameterized modules are
examples of some of the most notable application of the
abstraction principle in software systems.

The goal of artificial intelligence applied to software
engineering is to provide increasing automation to the
software development process. The application of the
abstraction principle to automate the construction of
artifacts (that would normally requite a creative process)
can be found in early AI work, For example, Emycin (1),
an expert system shell was developed by abstracting the
control structure of Mycin; abstracting out the process of
building blackboard systems yielded AGE (2).
Subsequent commercial expert systems shells are based

on different mixtures of design and Im3cess abswactions.
More recmtly, abstraction has been successfully used in
automatic programming: the KIDS system (3) contains
absuactious of several different classes of algorithms in
the form of algorithm theories which can be (semi-)
automatically instantiated to synthesize specialized
algorithms for several different problem instances.

In the KASE (Knowledge Assisted Software
Engineering) project (4, 5, 6) we are currently
investigating the utility of abstracting software system
designs and the design process. It is generally conceded
that designing software systems is a creative and ill-
understood process. Successful software designs are
created by a very small group of designe_ however, the
process is rarely documented and the final design is
typically not well documented. Consequently it is very
difficult to understand and maintain the system, which in
turn leads to poor reuse. Our approach to this problem
consists of (1) identifying useful classes of software
systems, (2) abstracting the design of the system as a
generic architecture, and (3) building tools that allow
specific systems to be constructed semi-automatically by
customizing the generic architecture. Such an approach
allows us to (1) reuse the architecture for multiple

applications within the class, (2) capture the process of
software design which could be used to maintain the
system (7) or be reused for multiple designs, and (3)
ultimately learn algorithmic descriptions of the design
process (8).

As an initial test-bed we chose an experimental system,
ELINT (9), that was designed several years ago at the

Knowledge Systems laboratory. In an earlier paper (5)we
reported our initial work on KASE which provides
knowledge-based support to partially automate the
construction of the ELINT system using a generic
architecture. In this paper we describe the reuse of the

generic architecture and the design _ocoss to design
another system, HASP (10), which is similar to ELINT.
but was developed for a different domain by ano0w_ learn
of designers. We discuss the advantages and limitations
of this approach, and discuss issues for furth_ research.

2 Generic Architectures

Wefirstexplainthenotionsof agenericarchitecture
andtheprocessof customizingthearchitecturemore
precisely.

Definition. A module is a packaging of objects,
relations, types, and procedures in a logical unit.

In KASE, a module itself is rewesented as an object
with a set of attributes. Figure 1 shows the minimal set of
attributes for each module. Attributes that are preceded

by an * are derived attributes whose vnlues are computed
from the primitive attributes (e.g., the input to a module is
simply the set of data-types that form arguments to
procedures provided by the module and the results of
procedures required by the module). A module interface
is defined in terms of the services (operations, procedures)
that it provides to other modules, and the services it
requires from other modules. The other attributes
constrain the way a system is structured and the way
modules communicate with each other. For example, a
module may only use services provided by its submodules
or a module that it has access to.

MODULE

supermodule
subn_ules

provides
requires
has-locally
has-access-to

*inputs
*outputs
*calls

*called-by

module that contains this module
modules contained within this module

services provided by this module
services required by this module
local data types and procedures
modules which can provide services to
this module

data flow into the module
data flow out o/the module
modules called by procedures within
this module

modules that call procedures provided
by this module

Figure 1. Minimal internal representation of a module.

Definition. A parameterized module is a module in
which some of the attributes are abstracted as parameters.

A parameterized module is represented by two
additional attributes: parameter.list and customization.
The parameter-list contains a fist of attributes that need to
be instantiated. We allow any of the primitive attributes
(except supermodule) to be a parameter. Customization
contains a set of customization commands tha" a be

used to customize (instantiate) a parameterized m: e.
Definition. A customi:ation command is a tu, . <P,

M, F, R, [E]> where

P is the name of a parameter,

M is a method for instantiating the value of the
parameter,

F is the input domain for M, i.e., the set of factors that
affect the outcome, of the method.

R is the output domain of M, and
(optimal) E is an explanation or rationale for the

customization method.

Depending upon the parameter the customization
method, M, may consist of selecting a value from a ixe-
computed list of alternatives, wansforming an abstract
program _hema using a setof transformational rules, or
inferring a value using a set of heuristic design rules
and/or algorithms. Likewise the input and output domain
could range from a library of reusable instances to a set of
rules to a setof domain-specific assumptions. The
optional argument E is a canned text string or a text
template (which is instanfiated based on the contex0 that

can provide an explanation for the values computed using
the customization method.

Definition. A generic architecture is def'med as a
topological organization of a set of pararneterized
modules, together with the inter-modular relationships.

Designing a software system using a generic
architecture consists of instantiafing the parameters of
each parameterized module by a concrete value while
maintaining the inter-modular comw_ts.

Figure 2 shows an overview of the design process
based on generic architectures in KASE. The boxes
outlined with double lines represent knowledge
components that are part of KASE. A designer initiates
the design process by first selecting a generic architectme
from a library based on the problem class for his
particular Wot_!:m and the desired solution features
(section 3.1). A _-_ciatedwith the generic architecture isa
meta-model which may be thought of as a rewesentation
scheme for a problem class (section 3.2). A particular
application problem is described by instantiating this
meta-model (section 4). The final knowledge component

called customi:ation knowledge contains the knowledge
necessary to customize the generic architectme md is the
basis of KASE's intelfigent support (section 5).

3 Architectural commitments

In any generic architecture,themodules and inter-

modular relationships exist within a semantic'context
consisting of (1) goals and subgoals of a task and a
strategy for achieving the goals, and (1) classes of objects
manipulated within the architecture. Thus, when a
designer selects and commits to a generic architecture for
customization, he is also making two additional
commitments: task commitment and ontological
commitment.

3.1Task commitment

The fhst commitment inherent in an architecture is the

classes of problems being addressed and the overall
solution strategy. Architectures are designed to solve a
particular class of problems. For example, systems that
perform batch transformation on a single set of inputs
would have a different architecture from one that

performs continuous transformations; these two
architectures would be radically different from, say, a
real-time interactive system that is governed by strict

timing constraints and user interactions.
Architectures also embody a set of high-level, strategic

decisions on how to decompose and solve the problem.
Examples of such strategic decisions are whether to use
conc_y or not, whether to use symbolic processing of
a statistical analysis of data, whether the system
functionality should be decomposed into a set of
horizontal layers or whether to use weakly coupled
verticalpartitions.Ingeneral,thesesolutionstrategiesare

governedby theproblemclasses.

For thegenericarchitecturecurrentlyrepresentedin
KASE, the taskisto interpretcontinuouslyreceived

signalsfromone ormore sourcesand infertheactivities
ofthemovingobjects.The solutionstrategyistosolve

theproblemby symbolicinterpretationofthedatausinga

blackboardproblem-solvingmodel (Nii,1982)on a uni-

processormachine.

3.2 Ontological commitment

An ontology is a vocabulary of representational terms for
describing a domain. Having associated a generic

architecture with a problem class, we can create an
ontology of generic terms that are relevant for describing
problems belonging to that class. The ontology of generic
terms are based on the conceptual primitives available in a
model gelwesentation language. The modeling primitives
that we have is based on an object-ofiented scheme that
creates a model from three different perspectives - a static
orobject model, a behavior model,anda functional model
(I I). The modeling primitives currently available in
KASE are objects, relations, operations, states, events,
tromitions, attd (data) types.

We call the ontology of generic ternu associated with a
generic architecture a recta-model, which refers to the
classes of objects and tasks that are intrinsic to the
architecture. Figme 3 shows fragments of the recta-model
associated with a generic architecture for tracking mobile
platforms based on a symbofic interpretation of signals

emitted by the platforms.
We assume that the ontological commitments in a

particular generic architecture are shared by domain
modelers and designers reusing the architectme. The use
of textual annotations, mnemonic names, and expficidy
represented constraints are used to facilitate the sharing to
some extent. The issue of how to communicate

ontological commitments in general is an important

Problem
Class

featulcs

Customization

User Knowledge

Library of
Generic

Arc hitectures
Modules

Generic

Architecture

User

User

Design

Domain
Model

Specific]Architecture

Figure 2. Overview of software design based on generic architectures in KASE.

/ objects-_be-_
ob_t _ _i_ng.agen_

Ca)Object model

(b) Behavior model: state transition diagram for
>bjects-to-be-tracked. The labels on arcs represent events.

Figure 3. Fragments of the object(static) and behavior
recta-model associated with a generic architectm'e for

tracking objects.

research topic that is beyond the scope of our work (12).

4. Domain Modeling

The recta-model associated with a generic architecture
can be used to drive the acquisition of a specific domain
model. KASE provides visualization tools and editors

(built on top of the KEE environmen0 to aid a domain

analyst in instantiating the recta-model with terms and
concepts of a particular domain. Figure 4 shows the
insumflation of two mere*model objects in two different
domains- ELINT (tracking aircrafts based on processed
radar signals) (9) and HASP (u-acking ships based on
processed sonardam)(I0).

A domain model contains the objects and relations.
their aun'butes, and opm'adons that need to be defined by
tbe anMyst. The attributes of a _ _ object and
the operations associated with the object are shown in
Figure 5. An operatkm is specified formally using pre-
and post-conditions on the inputs and outputs of the
operation. The generic state transition diagrams
associated with the o_ects-to-be-tr_:l object is used to

provide a starting pointto a domain analyst in specifying
the operations. Typically, the domain analyst would copy
the generic state transition diagram associated with an
object and then modify it using the graphical and text
editors provided by KASE. Once the state transition
diagram is customized, the designer would fill in the
definitions of each operation. Figure 6 shows the
customization of a state-transition diagram for the source

object and the definition _ an opemti_ m it.
One of the implications of providing intelligent

assistance is that the system be able to deal with
incomplete and inconsistent information (13, 14). In
KASE the user is not prescribed to foUow a ixltticular
sequence of steps nor is it necessary to provide complete
and consistent requirements at all times. For example, the
following possibilities can occur in KASE:

objects-to-be-tracked

(meta-model objecO

emilter

cluster

aircralt

(objects in Domain 1)

fleet

pa_onn

sour_

harmo_

line

sJOrlMs
(recta-model objecO

observations line-segmmts

_eaeack _r_t_e-_

(objects in Dorm_n 1) (objects in Domain 2)

(objects in Domain 2)

Figure 4. Instantiation of meta-model objects to ob.[ect instances in two ,different domains.

Attributes

Orera_ns

Cluste¢

kl

head_
acev_
sum
lhmat-_tential

crea_

me_e_ust_
delele-c_

Source

po_xl
con_k_
e_

create-source
su$_cld-so_'ce
dissolve-source
mh-soume-_
oom_m-po_Jt@x_
ooml_-confm_:e

Domain I Domain 2

Figure 5. Attributes and operations of two typical
objecmintwo different tracking domains.

• A state transition diagram is inconsistent with the
operation definition: the preconditions mentioned in the
operadondefinition does not incTudean event speciF_i in
the state transition diagram, or includes an event not

specified in the state transition diagram. KASE detects
such inconsistencies and repot_ them to the user.

• The state transition diagram and the operation
containredundantinfomation.KASE checksto see that

theWe= andpostconditio_inthestatetransitiondiagram
andtheoperationdefinitionareconsistent.

We createdthedomainmodel forELINT and HASP

by instantiating and extending the generic tracking meta-
model. The HASP domain model consists of 6 objects to

betracked,7 relationship betweentheseand otherobjects

in the domain,and29 operation definitions,andwe found
that even for this small domain the conslraintchecking

provided by KASE was ve_ usefid.

5. Customization of Architecture

Once an initial model of an application domain is in
place, a designer can begin designing the system by
instanfiating the module parameters comprising the
generic architecture. In order to illustrate the
customization process we give below a descriptionof a
session involving a hypothetical designer who is using
KASE to customize the generic a_hitecture for the HASP
domain. Instead of giving a detailed description of the

(a) lnstantiation of a generic state transition diagram (see figure 2)

(DEF-OPERATION dissolve-source

:comment "If a source is suspended for more than N time-units
thenremove it fromfurtherconsideration."

:mimt ((?s source) (?t time))
:precondition (AND (ffi?s.state SUSPENDED)

(> (- (suspension-time ?s.evcode) ?t)
N)

(= ?s.evcode EVCODE)))

:b_y0
:postcondition (AND (= ?s.state dissolved)

(ffi?s.evcode (EVCODE II[dissolved-at ?t])))

(b)Definitionofthedissolve-sourceoperationappearingintheabovediagram

Figure 6. Specifying a domain model by instantiating a meta-model

entirecustomizationprocess,we will concentrate on
highlighting some of the interesting features of KASE

including the following:
• Context-sensitive customization
• Integration of diffe_nt customization methods
• Suggest-and-instantiate design paradigm
• Propagation of design decisiom
• _L_c design _q_:ort
• RafionaieJexp_ of design process

In order to aid readability, the design session is divided
into the customizationof the 4 main modules:m.Signal-
Interpreter,m-Control,m-BBPanel(a subcomponentof m-
Situation-Board),and m-Tracking-Component(see below).
Knowledge of blackboard architectures is helpful in
understanding the process, but the objective is to elucidate
the variety of knowledge-based assistance being provided
to the designer.

5.1 m-Signal-Interpreter

The designer begins by using one of the visualization
commands to show the module decomposition and data

flow diagram for the generic architecture (Figure 7). The
designer decides to begin the customization process by
starting from the top-level module, m.Si_lal-inte_eter. To

customize the module the designer moves the mouse over
the module and clicks. KASE presentsa customization

menu that is context-sensitive and contains a list of all

known customization options available for this module,
along with an explanation of what each command does on
the bottom panel of the scree_

For this module there is just one parameter that
represents the overall solution strategy for the problem. In
general, there ate three main strategies for solving
problems in this 8rchitecture: event-(given (or data-driven
or bottom-up), e_ (or model-driven or top-
down) and hyt_d (i.e., both event- and expectation-

driven). KASE presents a list of the_ three alternatives
andasks the designer to select one. The designer decides
to initially build it purely event-driven system. KASE
incorporates this choice and marks the module as being
customized. At the same time it Wogmgates the effect of
this decision to the other tWO affected modules, m-
Situation-Boardand m-Tracking-Component.The overall
solution strategy results in the iustanfiation of a few
procedures in these two modules (for recording and
manipulating events) and are used to customize the values
of some other parameters. However. the designer need
not be concernedwith all the ramifr.ation of this decision

at this point and continues on.

5.2 m-Control

The designer next decidea to work on the m-Oon_

Figure 7. Module decomposition and data flow diagram of the generic architecture for signal interpretation.
For simplicity only 1 level of decomposition is shown although KASE allows upto 3 levels to be shown.

module.Thus,KASEdoesnotprescribeapredetermined
sequenceof designactions,andletsthedesignerconu_l

deign processas much as possible. The m-Control
module contains the rap-level driver routine for the
architecture. The algorithm essentially consists of a loop
where in each iteration, the algorithm picks a pair of
tracking agent from m-lrackino-compomntand some object
(ora setof objects)fromm-Situation-Board,andexecutes
the operations associated with the tracking agent on the
objects. Depending on what algorithm is used to select
the tracking agent and object(s), and how many operations
and objects are to be processed in each iteration, a wide
variety of control algorithms are possible. Most of the
functionality of m.Conlrolis divided into two submodules:
m-Selectfocus and m-Scheduler, m-ConlroliLseif has a code

template associated with it which (when completely
instsntiated) contains calls to the procedure provided by
the two submodules.

For the m-control module KASE displays two

customization commands relating to the following
parameters:
• Processing-priority: How to resolve conflicts in a hybrid

processing strategy (Since the designer chose a pure
event-driven processing strategy, this parameter is
irrelevanO.

• Focusing-sU'ategy: How to determine the next focus of
auention, i.e., should it based on the uacking agents or
on the nodes in the situation board.

The designer chooses a tracking-agent based focusing
strategy. This triggers a set of transformations that refine
the code tern)late associatedwith the m-controlmodule

s omc'EJ 'o m c-I I
S_oErr -uo o_t_-nroz_T]c_ I
n,arrx_'ru_Ti-xmoozcruu l

(a)

Co)

i R U_¢_]_fl'l' .R R .LgV'g T.M I_

II_T_TI_ E-B|--LEVELJJI I
(c)

and instandates a few additional procedures provided by
the submodules of m-control. Continuing with his top-
down design paradigm the designer now begins
customizing the submodules of m-c_got:
• m-solocffoa_ which contains procedures for determining

the next focus of attention (in this case the next
trackingagent to invoke).

• m-schedulerwhich contains procedures for scheduling
thenextprocessingaction(a_ ofknowledgesource
in m-tracking-componentand an object in m-situation-
tmrdtoacton).
In the process of customizing m-sot_tt0custhe designer

chooses a dynamic focus selection strategy. KASE does
notpossessenoughknowledgetocompletelysynthesize a
dynamic focus selection algorithm. So, it simply records
thisdecisionandinfocn_ the use¢d_ he needsto wovide
an algorithm that takesas input a set of available tracking
agents and returns the most promising one. KASE also
maintains a record of modules that have not been fully
customized.

At this point, the designer decides to shift his attention
to m-trackin0-component module (realizing,

opportunistically, that he first needs to determine the set
of knowledge sources in the m-lrd_l_-compo_flt module
before beginning to design the dynamic focus selection
algorithm). Recent studies (15) have provided empirical
evidence that this kind of opportunistic shift occurs
frequendy during design and a guiding theme in our
project has been to provide a design environment that
permits a designer the flexibility to

SELECTALL
DESELECT ALL

DONE
ABOflT

LINE
SOURCE

PLATFORM

I'¢N:IMOMC4JNE-,_ _C
PLATF'OI:IM-,_:_C E-A._5OC
SOURCE_-A$ SOC

LINE4.1NESEG-A$ _:X:
STA_-B_

STA11ON-t.INE-O_
5TATION-IJNE $ EG-O_

Figure 8. Customizing modules in the generic architecture

navigateamongdifferentcomponentsofthedesign(6).

5.3 m-Tracking-Component

The m-Tracking-Component module contains as

parameters a set of submodules called tracking agents
(also called ksoufms) where each lracking agent has a set
of operations (called ks-operations)associatedwith iL
Each operation in a tracking agent takes as input some
information from m-Situation-Board and updates the
information on it as a result of the operation. The tracking
agents are selected by m-Sched_r based on their potential

for contributing to the solution. The customization
commands available for m-tracking-_mpemnt is shown in
Figure 8(a). The designer beginsby selecting suggest-ks-
operations and KASE responds with the following

message:
"You need tofirst instantiate the 8Bleveis parameter of

m-BBP anel module/"

In KASE, the dependencies between the various
parameter values of a generic architecture must be
explicitly stated (see definition of customization
commands in Section 2). These are used in two ways:
First, during customization, if the value of a particular
parameter depends on the values of some other
parameters,KASE uses these dependenciesto guide the
design process (as in the above case). Second, EASE
maintains a history of design actions and uses the
dependenciesto restzucturethe historyinto a lattice; this
enables KASE to localize effects of changes in the design
and provide an efficient repla) mechanism (7).

5.4 m-BBPanei

Guidedby KASE the designerproceedsdirect]y to the
m-BBPanetmodule(a submodule of m-SituationBoard).The
customization commands available for this module ate
shown in Figure 8(c), and illustrate another feature of
KASE: suggest-and-instantiate. Until now most of
KASE's customization methods were fairly
straightforward - selection of an option from a set of pre-
computed alternatives, or application of a set of
transformations to a code template. This customization

command is an example of the use of heuristic design
rules. For parameter values generated by using heuristic
design rules, EASE creates a suggestions-work.space and
initially puts suggested values of the parameters in this
workspace. These are meant to be default values for the
parameters. The designer can examine the suggested
values, ask for rationales for the suggestions, and edit
them without actually committing the changes to the
architecture. When satisfied, the designer can instantiate

the architecture parameter with the suggested values
(alternatively he may reject these values). The intention is
to make the designprocesscomwehensible to, as well as
controllable by, the designer, while still retaining the
ability to provide useful default solutions.

On clickingthesuggest-bb-levels command from the
customization menu ofm-BSPanelKASE presentsthelist

of objectsand relationsthatshouldbe a l_tttof this

module (Figure8(d)).The designercan ask KASE to

explain it= suggestions and KASE uses annotated text
templates associated with the rules to provide

explanations, for example,
"Because LINE is an instaace of OBJECTS-TO-BE-

TRACKED and all OBJECTS-TO-BE-TRACKED must be

represented on M-BBPANEL..."
The designer can use this rationale to modify his

requirements and/or refine a EASE design heuristic.

S.5 m-Tracking-Component Revisited

Having instantiated the BBleveiparameterthe designer
returns to the m-Tracking-Componentmoduleand re-selects
the suggest-ks-o_cali_s command _ignre 8 (a)). The ks-
operalionsconsist of alloperationsrequitedto compute

and monitor the various properties of the objects and
relationsto be tracked- for example, poeitionaUribete in
source shown in Figure 5. The slz'actureof the ks-
operationsdepends on the overall solution strategy

selected. Since it was decided to design the system as a
pure event-driven system, the sw_ture of a knowledge
source operation consists of three components - (i) an
operation that takes as input some information from the m-
BBPaneimodule and updatesm-BBPanelasa result, (ii) a
set of events called triggers that signal that the knowledge
source operation might conu'ibote some information on
them-SiluationBoardmodule, and (rio a set of eventscalled
posted-events that represent the changes on the m-BBpanet
as a result of the operation. (This is described in more
detail in (5)).

KASE firstdetermines the setof all ofwaratio_ flint can
affect any of the objects or relations storedin m-BBPanol.
It then determines the set of events for each of the

operations,using a set of heuristic rules (a paraphrase of
some of the heuristics are shown in Figure 9). For the
HASP example, this results in the creation of 46 events

and 26 knowledge source operations. A designer can ask
EASE for a rationale regarding what operations an event
u'iggers and why, which operations post an event and
why, and why a paniculat operation was selected to be a
ks-operation.

There are other customization commands provided by
KASE that automate some of the more frequently

He_t_ l (Determiningt;m= ote_'_m).
If an object is represented on the BBlevel, then create events for each auribuie of the object that can be modified. (The

event represents the fact that the value of the object attribute has been updated).

(c_mining pn_N_m)
If an operation, OPl, updates the value of a derived attribute, A1, and the value of the derived attribute functionally

depends on the value of some other attribute, A2, then any event that signals an update in the value of A2 must trigger
operationOpl.

Figure 9. Examples of some heuristics used to determine the set of events triggering ka_

occurring design activities for such architectures, for
example, design optimizadoM. One such optimizing
command, shown in Figure 8(a), is to merge events. It
may be the case that whenever a particular event occurs it
is usually accompanied by another event. For example,
the change in a particular attribute, say heading, of a
tracked object may usually be accompanied by changes in
its velocity as well as a frequency shift in the signal
associated with that object. Thus, it might be more
efficient to group all operations that depend on either of
these three events and perform them together.

This example illustrates another guiding theme of our
approach that is well-known in knowledge-based software
engineering research (e.g. (3, 16): Divide the design task
between a human and KASE in a way that exploits the
unique skills of each. In general, the human is better
equipped to decide when to apply an optimization
technique and what optimization techniques to use,
whereas the machine is better equipped to carry out the
optimization task, propagate t._e effects of those changes
to other parts of the program (in the above example

• revising the trigger and posted-event component of each
ks-operation), remember the optimization task, and if
necessary, undo the effects of the opdmizati6n operation
later. The use of generic architectures provides a context
whereby useful and common optimization tasks can be
identified and mechanized.

There are several other customization commands

provided by KASE, the details of which are not important
for the purposes of this paper. We have successfully used
the same set of customization commands to synthesize
different variants of a generic architecture for two
different domains, demonstrating the reuse of both the
architecture structure as well as the design process.

6. Related Work

Work on supporting the synthesis of domain-specific
software systems is recently receiving widespread

attention (17). The notion of using generic wchitectures as
a basisfor providing this support is the subject of a major
DARPA sponsored resemgh initiative (the DSSA project).
Our work contributes to the DSSA effort by providing a
framework for building domain and architecture specific
design environments.

The LEAP project (18) represents an approach that is
closely related to ours: an &chitecture is represented as a
setof reusablecomponentswhich arespecializedinan
interactive environment using design rules. However, the
domain model for an application is not explicitly
represented and the design rules (corresponding to our
customi:ation knowledge) ate acquired interactively from
an eud-user during design devek3qpment.

Two other related works include the ARIES project
(13)which is concerned with acquiring specifications in a
formal language which could then be converted into an
efficient implementation using transformation rules and
the work on Composite System Design (19). which
attempts to design composite systems from formal
statements of requirements.

The general approach of creating software artifacts by
knowledge-based refinement of an abstract artifact is
being investigated by numerous researchers (e.g. (20, 21,
22))

7. Conclusions and Future Work

Our description of a generic software architecture
embodies concepts and information from many
knowledge domains. From one perspective a generic
architectureisan objectofthesoftwaredomaininwhich

the artifact is described using concepts such as data flow,
control flow, and data type. From another _tive, it
is a high-level description of a task and its solution. From
yet another perspective, a generic architecture is an
ontological framework within which the application

domain can be modeled; that is, a generic an:hitectta_ can
be viewed as a meta-_eL

Such a generic architecture when used as a basis for

reuse provides reuse at the level of entire systems instead
of at the level of algorithms or subroutines. The meta-
model associated with the architecture can be used to

facilitate domain modeling which currendy constitutes a

signif'r, ant bottleneck in creating domain specific systems.
Generic architectures also enable formalization of the

design process which in turn leads to design with fewer
errml as well as efficient maintenance and redesign,

Unlike application generators where the customization

knowledge is embedded in the macros and interwetml of

the application generator, the design process knowledge is

represented explicitly which, we believe, increases the

generality and flexibility of the design environment.
Some of the current limitations in our approach include

the assumption that the application shares the ontology

and design of the solution assumed in the architecture.
Communicating and enforcing these commitments are

critical issues. In addition, acquiring architectural
abstractions and the associated customization knowledge

may not be easy for some classes of applications.
However. abstraction needs to be done once, and for a

class of application that have many potential instances we
feel the advantages outweigh the disadvantages. In

principle, it is also possible for a designer to modify the

customization knowledge by modifying the design rules

implemented in KASE. However, in practice we do not

expect a designer to do that, and would like to provide

tools that would automatically modify the customization

process. One way of doing this is to infer or learn

appropriate customization rules by observing a user's
actions. Such a capability has been proposed by others (8,

23) and we plan to incorpo]ate it in KASE.

References

1. W. van Melle" A Domain Independent System that
aids in Constructing Consultation Progrmns, PhD. Computer
Science Departmenk Stanford University (1980).

2. H.P. Nil, N. Aiello. AGE (Attempt to Generalize): A
knowledge-based program for building knowledge-based
programs. 6th International Joint Conference on Artificial
Intelligence 1979), pp. 645-655.

3. D.R. Smith, KIDS: A Semi-automatic Program
Development System, IEEE Transactions on Software
Engineering 16, 1024-1043 (i990).

4. H.P. Nil, N. Aiello. S. Bhansali. R. Guindon, L.
Peyton, Knowledge Systems Laboratory, Computer Science
Department, Stanford University, Knowledge Assisted Software
Engineering (KASE): An introduction and status (1991).

5. S. Bhansali, H. P. Nii, KASE: An integrated
environment for software design, 2nd International Conference
on Artificial Intelligence in Design Pittsburgh. PA, 1992),

6. R. GuVndon, Requirements and design of
DesignVision, an object-oriented graphical interface to an
intelligent software design assistant.. ACM Proceedings of
C!-!]92 Monterrey, CA. 199'2)'

7. S. BhamalL Generic software architecture based
redesign, AAAI Spring Symposium on Computational
Considerations in Supporting Incremental Modification and
Reuse Stanford, CA, 1992),

8. P. Garg. S. Bhansali, Process Programming by
Hindsight, 14th International Conference on Software
Engineering Melbourm, Aum'aliL i992)'

9. H.D. Brown, E. Schoen, B. A. Delagi, An
Experiment in Knowledge-Based Signal Undmtanding Using
Parallel Architectme_ No. STAN-CS-86-1136, Depummmt of
Compuu_ Science, Stanford Univenity,(1986).

10. H.P. Nil. E. A. Feigenbaum, I. I. Anton, A. J.
Rocknmm, Signal-to-Symbol Trmwfmmation: HASP/SLAP Case
Study, AI Magazi_ Sprlm_ 23-36 (1982).

11. J. Rumbaugh, M. BloOm,W. Premerhmi, F. Eddy, W.
Lorensen,Object-orie,a_ modMi_ and d_ign (Prentice Hall,
Englewood Cliffs, New Jensey, 1991),

12. T.R. Gruber, The Role of Common Ontology in
Achieving Sherabk, Reusable Knowledge Ba_s, in Principles
of gnowledge Represemation and Reasoning: Proceedings of
the 2mt lmarMtional Confareetct J. A. Allen, R. Fskes, E.
Smdewtil, E&. (Morgan Kmfmmn, San Mateo, CA. 1991).

13. W.L. Johnson, M. S. Feather, Using Evolution
Tr_formatiom to Construct Specifications, in Ataomating
SoftwareDesignM. Lowry, R.McCmney, EdL (AAAI Press,
Cambridge, MA. 1991).

14. H.B. Reubengein, . C. Waters, The Requirements
Apprentice: Automated Assistance for Requirements
Acquisition. IEF_ Transoc6on_on Soflwar, Emg/mm,/ng 17.
226-7.,40 (1991).

15. R. Guindon. Designing the Design Pmcam Exploiting
Opportunistic Thoughts, Hwnan-Computm' Intcracffon S, 305-
344 099o).

16. R.C. Waters, The Programmer's Apprentice: A
Sessionwith KBEmacs, IEE£ Tranaactionaon Software
Engineerin#11,1296-1320(1985).

17. Notes,AAA/ WorkMtop on Automating Software
Design. San Jose, CA. 1992).

18. H. Gravea, Lockheed Environment for Automatic
Programming. 6th Annual Knowledge-Baaed Software
Engineering Conference Syracuse, NY, 1991), pp. 78-89.

19. M. Feather. S. Fickaa, B. R. Helm, Composite System
Design: the Good News and the Bad News, 6th Annual
Knowledge-based Softwa'e Engineering Conference 1991)' pp.
13-27.

20. M.D. Lubars, M. T. Harandi, Addressing Software
Reuse through Knowledge-based Design, in Software
Re_abiiby T. J. Biggerstaff, A. J. Peril& Eds. (ACM press,
New York, New York, 1989), voL 2, pp. 345-377.

21. N. Maiden, A. Sutoliffe, Analogical Matching for
Software Reuse, 6th Annual Knowledge-Baaed Software
Engineering Conference Syracuse. NY, 1991), PP- 101-112.

22. N. Iscoe, et al., Model-B_ed Softwm_ Design, AAAI
Workshop on Automating Software Design San lose, CA.
1992)' pp. 72-77.

23. S.C. Bailin, R. H. Gttttis, W. Truszkowski, A
Learning-based Software Engineering Environment, 6th Annual
Knowledge-Based Software Engineering ConferenceSyracuse.
NY, 1991), pp. 251-263,

